当沟通变成数据
数据化的另一个前沿更加个人化,直接触摸到了我们的关系、经历和情感。数据化的构思是许多社交网络公司的脊梁。社交网络平台不仅给我们提供了寻找和维持朋友、同事关系的场所,也将我们日常生活的无形元素提取出来,再转化为可作新用途的数据。正因此,Facebook 将关系数据化——社交关系在过去一直被视作信息而存在,但从未被正式界定为数据,直到Facebook“社交图谱”的出现。Twitter通过创新,让人们能轻易记录以及分享他们零散的想法(这些在以前,都会成为遗忘在时光中的碎片),从而使情绪数据化得以实现。LinkedIn将我们过去漫长的经历进行了数据化处理,就像莫里转化旧航海日志那样,把信息转化为对现在和将来的预测:我们可以认识谁,或者哪里存在一份心仪的工作。
然而,数据的使用还远未成熟。就Facebook的情况来说,因为知道太早泄露用户数据的许多新用途会让用户反应过激,所以它精明地选择了忍耐。另外,公司仍然在为其收集的数据数量和类型,包括隐私问题进行商业模式和政策上的调整。目前,它所面对的指责都集中在能采集到什么,而并非它实际用这些数据干了什么。
大数据的力量
Facebook2012年拥有大约10亿用户,他们通过上千亿的朋友关系网相互连接。这个巨大的社交网络覆盖了大约10%的全球总人口。[9]想想这所有的关系和活动在数据化之后都为一家公司所掌控,这些指责和质疑就不能算作空穴来风。
不可否认,其潜在用途非比寻常。一些消费者信贷领域的创业公司正考虑开发以Facebook社交图谱为依据的信用评分。FICO,信用评分系统,利用15个变量来预测单个借贷者是否会偿还一笔债务。但一家获得了高额风险投资的创业公司(很遗憾这里必须匿名)的一项内部研究显示,个人会偿还债务的可能性和其朋友会偿还债务的可能性呈正相关。正应了一句老话:物以类聚,人以群分。因此,Facebook也可以成为下一个FICO。显然,社交媒体上的大量数据也许能形成放飞想象的新型商务基础,其意义远不止表面上我们看到的照片分享、状态上传以及“喜欢”按钮。
同样,Twitter也已经开辟了其数据的新用途。从某种程度上说,2012年超过1.4亿用户每天发送的4亿条微博几乎就和随意的口头零碎差不多。事实上,它们通常就是如此。然而,Twitter公司实现了人们想法、情绪和沟通的数据化,这些都是以前不曾实现的。Twitter与两家公司,DataSift和Gnip达成了一项出售数据访问权限的协议。[10]许多公司对微博做了句法分析,有时还会使用一项叫作情感分析的技术,以获得顾客反馈意见的汇总或对营销活动的效果进行判断。
两家对冲基金,伦敦的英国对冲基金(Derwent Capital)和加利福尼亚的MarketPsych开始分析微博的数据文本,以作为股市投资的信号(他们从未公开自己的商业秘决,也不知道是倾向于投资势头良好的公司还是做空)。两家公司现在都在向经商者出售信息。就MarketPsych而言,它与Thomson Reuters合作提供了分布在119个国家不低于18864项的独立指数,比如每分钟更新的心情状态,如乐观、忧郁、快乐、害怕、生气,甚至还包括创新、诉讼及冲突情况等。数据被人类利用的频率远没有被计算机利用得多。以“金融工程师”而闻名的华尔街的数学奇才们,将数据传输到了他们的算法模式当中,来寻找能被有效利用并实现赢利的隐性联系。根据“社交网络分析之父”贝尔纳多·哈柏曼(Bernardo Huberman)[11]的分析,微博中单一主题出现的频率可以用来预测很多事情,比如好莱坞的票房收入。他和一位在惠普实验室工作的同事开发了一个程序,可以用来监听新微博的发布频率,基于此,他们就能预测一部电影的成败,这往往比其他传统评估预测方法还要准确。
这些数据的用途不胜枚举。Twitter微博限制在稀少的140个字符中,但与每条微博联系在一起的元数据是十分丰富的。Twitter的元数据,即“关于信息的信息”,其中包括33个分离的项。虽然一部分信息似乎并没多大用处,比如Twitter用户界面上的“墙纸”或用户用来访问这项服务的软件,但其他的元数据却很有意思,比如他们参与服务所使用的语言、所处的地理位置、关注的人以及粉丝的数量和名字。2011年《科学》杂志上的一项研究显示,来自世界上不同文化背景的人们每天、每周的心情都遵循着相似的模式,这项研究建立在两年多来对84个国家240万人的5.09亿条微博的数据分析上,这在以前是完全无法做到的。情绪真的已经被数据化了。
数据化不仅能将态度和情绪转变为一种可分析的形式,也可能转化人类的行为。这些行为难以跟踪,特别是在较大的社区和其中的子人群环境中。
大数据先锋
微博关联与疫苗接种
来自宾夕法尼亚州立大学的生物学家马塞尔·萨拉特(Marcel Salathé)和软件工程师沙先克·坎都拉斯(Shashank Khandelwal)通过分析微博发现,人们对于疫苗的态度与他们实际注射预防流感药物的可能呈现出相关性。重要的是,他们利用Twitter用户中谁和谁相关的元数据进行了更进一步的调查,发现未接种疫苗的子人群也可能存在。当然,这项研究的特别之处在于,不同于如谷歌预测流感趋势时利用汇总数据考虑一个地区人口的“平均”健康状况,萨拉特开展的情绪分析实际上揭示了个人的卫生行为。
这些早期的发现预示了数据化将走向何方。和谷歌一样,一些社交网络(如Facebook,Twitter,LinkedIn,Foursquare)坐拥了大型数据的宝藏,一旦这些数据信息得到了深入分析,它们就能轻易获得社会各行各业以及三教九流的几乎所有的动态信息。
分类:励志文章| 发布:Danny| 查看:2251 | 发表时间:2014-04-25
原创文章如转载,请注明:转载自正能量 http://www.tcomall.com/
本文链接:http://www.tcomall.com/post/225.html