正能量 - 传递正能量,拥有给力人生
      人生不给力,来点正能量!搭建自己的气质能量墙,唤醒潜在的正能量,为你的能量导航,积攒不同的今天,兑换不一样的明天,敞开心扉,迎接正能量!

最近更新

当文字变成数据

数字化和数据化的差异是什么?回答这个问题很容易,我们来看一个两者同时存在并且起作用的领域就可以理解了,这个领域就是书籍。2004年,谷歌发布了一个野心勃勃的计划:它试图把所有版权条例允许的书本内容进行数字化,让世界上所有的人都能通过网络免费阅读这些书籍。为了完成这个伟大的计划,谷歌与全球最大和最著名的图书馆进行了合作,并且还发明了一个能自动翻页的扫描仪,这样对上百万书籍的扫描工作才切实可行且不至于太过昂贵。

刚开始,谷歌所做的是数字化文本,每一页都被扫描然后存入谷歌服务器的一个高分辨率数字图

参与:2430时间:2014-04-25 大数据时代
量化一切,数据化的核心

记录信息的能力是原始社会和先进社会的分界线之一。早期文明最古老的抽象工具就是基础的计算以及长度和重量的计量。公元前3000年,信息记录在印度河流域、埃及和美索不达米亚平原地区就有了很大的发展,而日常的计量方法也大有改善。美索不达米亚平原上书写的发展促使了一种记录生产和交易的精确方法的产生,这让早期文明能够计量并记载事实情况,并且为日后所用。计量和记录一起促成了数据的诞生,它们是数据化最早的根基。

计量和记录能够再现人类活动。比如通过记录建筑物的建筑方式和原材料,我们就能再建同样的建筑,或进行

参与:2402时间:2014-04-25 大数据时代
数据化,不是数字化

“数据”(data)这个词在拉丁文里是“已知”的意思,也可以理解为“事实”。这是欧几里得的一部经典著作的标题,这本书用已知的或者可由已知推导的知识来解释几何学。如今,数据代表着对某件事物的描述,数据可以记录、分析和重组它。我们还没有合适的词用来形容莫里和越水重臣教授所做的这些转变,所以我们姑且称其为“数据化”吧——这是指一种把现象转变为可制表分析的量化形式的过程。

数据化和数字化大相径庭。数字化指的是把模拟数据转换成用0和1表示的二进制码,这样电脑就可以处理这些数据了。数字化并不是计算机改革的

参与:1361时间:2014-04-25 大数据时代
数据,从最不可能的地方提取出来

庞大的数据库有着小数据库所没有的价值,莫里中校是最早发现这一点的人之一。大数据的核心就是挖掘出庞大的数据库独有的价值。更重要的是,他深知只要相关信息能够提取和绘制出来,这些脏乱的航海日志就可以变成有用的数据。通过这样的方式,他重复利用了别人眼里完全没有意义的数据信息。从这个意义上讲,莫里就是数据化的先驱。就像奥伦·埃齐奥尼对Farecast所做的事情一样,用航空业过去的价格信息催生了一个大有赚头的新公司;也像谷歌的工程师所做的一样,通过过去的检索记录预测到了流感的爆发;而莫里则是发挥出了单纯用于记录

参与:2383时间:2014-04-25 大数据时代
莫里的导航图,大数据的最早实践之一

马修·方丹·莫里(Matthew Fontaine Maury)是一位很有前途的美国海军军官。1839年,在他前往双桅船“合奏号”(Consort)接受一个新任务时,他乘坐的马车突然滑出了车道,瞬间倾倒,把他抛到了空中。他重重地摔到了地上,大腿骨粉碎性骨折,膝盖也脱臼了。当地的医生帮他复位了膝盖关节,但大腿受伤过重,几天后还需要重新手术。直到33岁,他的伤才基本痊愈,但是受伤的腿却留下了残疾,变得有点儿跛,再也无法在海上工作。经过近三年的休养,美国海军把他安排进了办公室,并任命他为图表和仪器厂的负责人。

谁也想不到,这

参与:1709时间:2014-04-25 大数据时代
大数据,改变人类探索世界的方法

在小数据时代,我们会假想世界是怎么运作的,然后通过收集和分析数据来验证这种假想。在不久的将来,我们会在大数据的指导下探索世界,不再受限于各种假想。我们的研究始于数据,也因为数据我们发现了以前不曾发现的联系。

假想通常来自自然理论或社会科学,它们也是帮助我们解释和预测周遭世界的基础。随着由假想时代到数据时代的过渡,我们也很可能认为我们不再需要理论了。

2008年,《连线》杂志主编克里斯·安德森(Chris Anderson)就指出:“数据爆炸使得科学的研究方法都落伍了。”后来,他又在《拍字节时代》(T

参与:1612时间:2014-04-25 大数据时代
改变,从操作方式开始

每年,因沙井盖内部失火,纽约每年有很多沙井盖会发生爆炸。重达300磅的沙井盖在轰然塌在地上之前可以冲出几层楼高。这可不是什么好事。

为纽约提供电力支持的联合爱迪生电力公司(Con Edison)每年都会对沙井盖进行常规检查和维修。过去,这完全看运气,如果工作人员检查到的正好是即将爆炸的就最好了,因为沙井盖爆炸威力可不小。2007年,联合爱迪生电力公司向哥伦比亚大学的统计学家求助,希望他们通过对一些历史数据的研究,比如说通过研究以前出现过的问题、基础设施之间的联系,进而预测出可能会出现问题并且需要维修的沙

参与:1296时间:2014-04-25 大数据时代
“是什么”,而不是“为什么”

在小数据时代,相关关系分析和因果分析都不容易,都耗费巨大,都要从建立假设开始。然后我们会进行实验——这个假设要么被证实要么被推翻。但由于两者都始于假设,这些分析就都有受偏见影响的可能,而且极易导致错误。与此同时,用来做相关关系分析的数据很难得到,收集这些数据时也耗资巨大。现今,可用的数据如此之多,也就不存在这些难题了。

当然,还有一种不同的情况也逐渐受到了人们的重视。在小数据时代,由于计算机能力的不足,大部分相关关系分析仅限于寻求线性关系。这个情况随着数据的增加肯定会发生改变。事实上,实

参与:2072时间:2014-04-25 大数据时代
关联物,预测的关键

在小数据世界中,相关关系也是有用的,但在大数据的背景下,相关关系大放异彩。通过应用相关关系,我们可以比以前更容易、更快捷、更清楚地分析事物。

大数据洞察

相关关系的核心是量化两个数据值之间的数理关系。相关关系强是指当一个数据值增加时,另一个数据值很有可能也会随之增加。我们已经看到过这种很强的相关关系,比如谷歌流感趋势:在一个特定的地理位置,越多的人通过谷歌搜索特定的词条,该地区就有更多的人患了流感。

相反,相关关系弱就意味着当一个数据值增加时,另一个数据值几乎不会发生变化。[2]例

参与:2998时间:2014-04-25 大数据时代
林登与亚马逊推荐系统

1997年,24岁的格雷格·林登(Greg Linden)在华盛顿大学就读博士,研究人工智能,闲暇之余,他会在网上卖书。他的网店运营才两年就已经生意兴隆。他回忆说:“我爱卖书和知识,帮助人们找到下一个他们可能会感兴趣的知识点。”他注册的这家网店就是日后大获成功的亚马逊。后来林登被亚马逊聘为软件工程师,以确保网站的正常运行。

亚马逊的技术含量不仅体现在其工作人员上。虽然亚马逊的故事大多数人都耳熟能详,但只有少数人知道它的内容最初是由人工亲自完成的。当时,它聘请了一个由20多名书评家和编辑组成的团队,他们写书

参与:3557时间:2014-04-25 大数据时代
© CopyRight 2011-2025, 正能量 , Inc.All Rights Reserved L.冀ICP备13002191号-7